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Abstract-We examine the instability of free convective boundary layer flows in porous media. The medium 
is bounded by two semi-infinite plane surfaces forming a wedge of angle GL. One of the surfaces is heated 
uniformly and the other is either cold or insulated. The basic flow used in the analysis is the most accurate 
obtainable by means of higher order boundary layer theory. In general, the critical distance from the 
leading ed8e beyond which disturbances grow is found to be strongly dependent on the outer flow field. 
The only exception to this arises when the heated surface is close to the vertical and if the wedge is not too 
close to either 0” or 360”. The main implication of this paper is that instability occurs too close to the 
leading edge for the basic flow to be represented adequately either by the leading order boundary layer 
theory used in previous papers, or by even the most accurate higher order theory obtained using matched 

asymptotic expansions. 0 1998 Elsevier Science Ltd. All rights reserved. 

‘I. INTRODUCTION 

This paper describes an investigation of the instability 
of free convective boundary layers in porous media. 
The main differe:nce between the present work and 
previously published analyses is that we do not rely on 
the leading order boundary layer flow as a sufficiently 
accurate approximation to the basic steady state flow. 
Rather, we make use of the most accurate steady 
boundary layer flow obtainable by means of asymp- 
totic methods, and investigate whether or not the 
external flowfield generated by the leading order 
boundary layer has an appreciable effect on the 
stability criterion. 

The first papers to appear dealing with steady ther- 
mal boundary layer flows in porous media were by 
Cheng and Chang [l] and Cheng and Minkowycz [2]. 
In these papers, certain geothermal formations are 
modelled by assuming that they are represented 
adequately by semi-infinite surfaces which are hori- 
zontal and vertical, respectively. Cheng and co- 
workers further assumed that the boundary layer 
approximation is valid and analysed the flow and heat 
transfer by determining the leading-order boundary 
layer flow. The use of higher order boundary layer 
theory, which requires the use of the method of 
matched asymptotic expansions, enables the deter- 

t Author to whom correspondence should be addressed. 

mination of a more accurate value of the rate of heat 
transfer into the medium. Such work has been under- 
taken by Chang and Cheng [3], Daniels and Simpkins 
[4], Cheng and Hsu [S], Riley and Rees [6] and Hsu 
and Cheng [7]. 

However, if the ultimate aim of such analyses is to 
obtain accurate rates of heat transfer, it is essential to 
investigate the possible instability of these flows, for 
the presence of an instability serves to modify both 
the velocity and temperature fields and hence the tem- 
perature gradient on the heated surface. To date there 
are three papers which cover this aspect for an iso- 
thermal surface: Hsu, et al. [8], Hsu and Cheng [9] 
and Rees and Bassom [lo]. The paper by Hsu and 
Cheng [9] determines the critical distance from the 
leading edge of an inclined heated surface beyond 
which disturbances in the form of vortices grow. The 
other two consider the corresponding horizontal ther- 
mal boundary layer. The results of [lo] indicate that 
the critical distance for wave disturbances is 28.90, 
which should be compared with 33.47 for vortices in 
ref. [8]. Given that streamwise vortices were assumed 
in ref. [8] to constitute the preferred mode of insta- 
bility, it is clear that further work is essential in order 
to understand fully this problem. Furthermore, it is 
not clear from these papers whether there are any 
discernable effects of the outer flow field on the insta- 
bility criterion. 

All three papers cited in the above paragraph 
assume that the basic flow examined for stability is 
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NOMENCLATURE 

b” 
constant 
growth rate for vortices 

C wavespeed 
fO, f,, _&, f, coefficient functions for the 

streamfunction 
go, g,, &,, g2 coefficient functions for the 

temperature 

6 inclination of heated surface 
‘I similarity variable 
8,O temperatures 

angular coordinate 
g, p streamfunctions 
$> 0 infinitesimal disturbances. 

P pressure 
t time 
U, v, w seepage velocities in the x, y and z 

directions, respectively 
X, y, z streamwise, cross-stream and 

spanwise Cartesian coordinates. 

Greek symbols 
tl wedge angle 

Subscripts 
x, y, z, t differentiation with respect to x, y, 

z and t, respectively 
C critical value. 

Superscripts 
differentiation with respect to ye 

n scaled critical value. 

adequately represented by the leading order boundary 
layer flow. In this paper we relax this assumption and 
use as the basic flow the higher order solutions given 
in Riley and Rees [6] and the other papers cited earlier. 
In line with these papers we shall assume that the 
porous medium is bounded by a heated surface 
inclined at an angle 6 to the vertical, and a second 
surface which is either insulated or at the ambient 
temperature of the medium and which forms a wedge- 
angle CI with the first surface (see Fig. 1). Thus the 
basic flow is dependent on both a and 6. Daniels and 
Simpkins [4] show that it is not possible to present 
explicitly an arbitrary number of terms in the asymp- 
totic series for the boundary layer flow because eigen- 
solutions with arbitrary amplitudes always arise at 

some point in the series. Typically we can expect three 
terms, but no more. 

We investigate the effect on stability of varying tl 
and the number of terms in the basic boundary layer 
flow for any given inclination S. In general we find 
that the critical distance is very strongly dependent on 
both these factors ; it is only when the heated surface 
is near to the vertical that statements about critical 
distances can be made with any certainty, and only 
then if the wedge angle is not too close to either 0” or 
360”. 

In Section 2 we derive the governing equations for 
thermal boundary layer flow from a generally inclined 
surface and present the basic boundary layer flow 
obtained using matched asymptotic expansions. The 

X 

gravity 

porous medium 

Fig. 1. Flow domain and coordinate system. 
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equations satisfied by vortex disturbances are given in 
Section 3 and the results are presented and discussed 
in Section 4. The equivalent results for both vortex and 
wave disturbancels for a horizontal boundary layer are 
given in Section 5, We conclude with a brief discussion 
of the implications of our results in Section 6. 

2. GOVERNING EQUATIONS 

We consider the instability of free convective 
boundary layer flow in a fluid-saturated porous 
medium. The flow is induced by an isothermal 
upward-facing semi-infinite surface which is at an 
angle 6 to the vertical, where 0” < 6 < 90”. The porous 
medium is bounded by a second semi-infinite surface 
which is either insulated or held at the ambient tem- 
perature of the medium. The surfaces form a wedge 
of angle ~1, where 0” < tl < 360”. A Cartesian frame of 
reference is chosen where the x-axis is aligned with 
the heated surface, the y-axis is perpendicular to the 
heated surface, and the z-axis is in the spanwise direc- 
tion. The configuration is shown in Fig. 1. 

The surface y == 0, x > 0, is isothermal and is main- 
tained at the nondimensional temperature 0 = 1, 
whilst the ambient temperature of the porous medium 
is 0 = 0. The other bounding surface is either held at 
the ambient temperature (6 = 0) or is insulated. 

The basic equations for unsteady three-dimensional 
flow in a porous medium may be written in the form 

u,+u,t-w, = 0 # = -p,+ecos6 

v = -py+t?sin6 w = -pz 

o1 + 24 4 ve, + we, = e,, + eyy + e,, (1) 
where Darcy’s law and the Boussinesq approximation 
have been assumed to be valid. All the variables in 
equation (1) have been nondimensionalised as in Riley 
and Rees [6] and Rees and Storesletten [ 111. Here U, u 
and w are the seepage velocities in the x, y and z 
directions, respectively, p the dynamic pressure, fI the 
temperature, and t the time. We note that there is no 
nondimensional parameter in these equations ; this is 
a consequence of there being no natural length scale, 
but rather the material parameters of the fluid and the 
porous medium define a macroscopic length scale (cf. 
equation (6a) in ref. [l 11). 

The undisturbed basic flow, which we denote by the 
subscript zero (i.e. as u,,, vO, w,,, p,, and &,), is steady 
and two-dimend onal and satisfies the equations, 

a% a% ab z+_i=-cos?i--ZsinS 
ay ay (24 

(2b) 

where 

a+0 ah 
ug=-- uo=---- wo=o ay ax (3) 

and I,& is the basic flow streamfunction. Equations 
(2a) and (2b) are to be solved subject to the boundary 
conditions : 

tjo =0 e. = 1 on 

J/, =o e. = 0 or 

where I$ is the azimuthal 
heated surface (cf. Fig. 1). 

$=O 

m 
W 

s= 0 on Cp = CY (4b) 

angle measured from the 

The solution of this basic flow problem has been 
presented in Riley and Rees [6] and in more detail in 
Rees [ 121; these authors used the method of matched 
asymptotic expansions to determine a series solution 
for the flow and temperature fields within both the 
main boundary layer and the outer flow field. In the 
boundary layer region the solution takes the following 
formasx-*co: 

tiO = x”‘fo(?)+~(rl)+x-“‘lnxf;(?) 

+X-“%(V) +. . (5a) 

e0 = 90(~)+~-‘%1(~)+x-’ lnxg2(r) 

+x-‘g*(n)+... (5b) 

where the similarity variable n is given by 

4=$. (6) 

The functions fO, f,, r2, f2, go, g,, Q* and g2 which 
appear in equation (5) satisfy the ordinary differential 
equations : 

fb-g;coss = 0 (74 

g’6 + &gb = 0 C’b) 

f ‘; -g; cos 6 = i qgb sin 6 (7c) 

s; +f (Ml +fbsJ = 0 (7d) 

f’;-g;cosl?i = 0 (7e) 

s’;+ff& +f&-&7b = 0 (7f) 

f; -g;cos S = i(gr +qgS;) sin6+~(fo--flb--n2f~) 

(7g) 

g’;+;f&+f&T*-;f& = -ff;g,+gb-aq*gb: 

+fbi72 -f;sb. G’h) 

At n = 0 these functions satisfy the boundary con- 
ditions : 

f0=f,=f2=f2=0 VW 

go=1 g,=g2=g*=o (gb) 

whilst the appropriate conditions which match with 
the outer flow are that 
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fb,f;,g0,91,~2,g* + 0 

f; -+ -;a,cot(;a) 

f; +~w--a,l~ PC) 

as q+ co, where the constants LI,, and a, are given by 
the limiting forms : 

fo+ao and f,-$‘, +a, as q+co. (8d) 

We note that equations (7aH7d) can be solved 
explicitly whereas the solution to equations (7e) and 
(7f) involves an eigensolution with an unknown ampli- 
tude. The presence of eigensolutions in the expansion 
at this point results from what is known as the ‘lead- 
ing-edge shift’ which reflects a small uncertainty in the 
location of the leading edge in an asymptotic theory 
for large distances from the leading edge. This con- 
stant amplitude can be found by insisting that equa- 
tions (7g) and (7h) can be solved, but the resulting 
solutions for fi and g2 also contain a component of 
the form of the same eigensolution with an arbitrary 
amplitude. This second constant cannot be obtained 
except by comparing the asymptotic solution with a 
solution of the full elliptic equations of motion. We 
are therefore restricted to using only the first three 
terms in the asymptotic series equations (5a) and (5b), 
although we have to consider the first four terms in 
order to obtain the third explicitly. Further details on 
the derivation of these boundary conditions, the form 
of the outer flow field and the argument concerning 
the solutions of equations (7) are given in ref. [12]. 

3. LINEAR STABILITY ANALYSIS 

In this section we develop the linear stability equa- 
tions for the basic flow given above. It is well known 
that the primary mode of instability for upward-facing 
inclined surfaces takes the form of stationary stream- 
wise vortices, and therefore we shall concentrate on 
small disturbances of this form. We shall restrict atten- 
tion to disturbances which are locally independent of 
x ; such an assumption was also made in a recent paper 
by Rees and Bassom [lo] who considered the wave 
instability of horizontal thermal boundary layer flow. 
Therefore, we shall set 

!J = &I(& Y) + Ul (Y, z, 0 

u = uo(x, Y) + VI (Y, z, 0 

w = %(x,y)+w,(.Y,z,0 

P = Po(x,Y)+P,(Y,z, G 

0 = Mx, v> + 8, (Y, z, t) (9) 

where the basic Bow is denoted by the ‘0’ subscript 
and the infinitesimal disturbances by the ‘1’ subscript. 
The substitution of equation (9) into the full governing 
equations (1) gives the following set of linearised dis- 
turbance equations : 

u, = B,cosG VW 

2 2 !L!!!!+!!..!?5a __zsina 
a$ az2 (lob) 

where 

UOC) 

8th a*, vi=-- and w,=---. aZ ay (11) 

The appropriate boundary conditions for the dis- 
turbances are 

$, =0 0, = 0 on both C#J =0 and C#J = CC 

(12) 

For x-independent vortices, the disturbance equations 
(9) are of the form : 

$,(Y,-G t> = $(Y)e’“=+b’ (134 

e,cy,z, t) = O(y)ernr+b’ (13b) 

where $ and 8 are small amplitudes, a is the spanwise 
wavenumber and b is the temporal growth rate. Equa- 
tions (13) may now be substituted into equation (10) 
to give 

*,-u2$ = -i&sin6 U4a) 

(14b) 
On changing variables from y to q, and expanding the 
basic flow variables according to equation (5), the 
disturbance equations become : 

I)” - a2x$ = - iaxe sin 6 Wa) 

f? - a2x6 = - ia[x”‘gb +g; + x- ‘I2 In x&]$ 

+gb+;x-“yg, +&I) 

+x-‘(-g2+lnx~,+~~gg;))]8cos6 

-[;(f,-f&O)-fx-“‘$; 

+f~-‘(2~~-1_1nx(f~+~~))]@+bt? (15b) 

where dashes represent derivatives with respect to q. 
The boundary conditions to be satisfied by the dis- 
turbances are 

and 

$=O 6=0 on q=O (loa) 

$,0-+0 as ~]--+co. (lob) 

Given the large-q asymptotic behaviour of the basic 
flow quantities in equations (5), it is easy to show 
that equations (15) admit solutions with exponential 
decay. Thus the disturbance is confined to the bound- 
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ary layer, and it is not necessary to investigate the 
form of the disturbance in the outer flow regime, as 
was the case for the basic flow. 

As we are interested in determining where the basic 
boundary layer bsecomes unstable, we have to find the 
critical distance .x, beyond which disturbances grow. 
The value of x,, however, is a function of the wave- 
number a and it is therefore necessary to minimise 
x, with respect ‘to a. In order to do this easily, we 
supplement equa.tions (15) with a further set which is 
obtained from equation (15) by differentiating with 
respect to a and setting ax/au = 0. If we now define 
Y and 0 according to, 

y=i?!t and @=” 
au au (17) 

then Y and 0 satisfy 

Y’” -a2xY = - ix(a8 +0) sin6+2ux$, (18a) 

0” - a*xO = 2&i-- i[x”*gb +g; +x-i’* In x&] 

x (aY+~)-[~~g9b+~x-“Z(g,+t19;) 

+ x-‘(-g2+lnx(~2+~J~))10cos6 

-[;&~O)_;x-‘/*~f; 

+ix-‘(2fZ -lnxCf2 +g2))]O’+ b@. 

(18b) 

Assuming that the temporal growth rate b is zero, this 
results in a tenth order system of equations where the 
ninth and tenth equations, are simply, 

1; = 0 and @ = 0. 
‘rl all 

(19) 

As both x and a are found as eigenvalues of this 
homogeneous system, it is necessary to impose nor- 
malising conditions ; thus we set 

t?‘(O) = 1 and O’(0) = 0. (20) 

Equations (16), (18) and (19) were solved numeri- 
cally using a fourth order RungeKutta scheme 
coupled with a standard shooting method employing 
Newton-Raphaon iteration. The values of 6 and 61 
were varied systematically as was the number of terms 
used in the basic boundary layer flow in order to 
determine their separate effects on the critical distance. 

4. RESULTS FOR THE INCLINED HEATED 
SURFACE 

It is necessary to note that the critical distances and 
wavenumbers we shall be presenting in this section 
are scaled with respect to the inclination angle, 6, with 
0” < 6 < 90”. Thus the critical distance of wave- 
number, denoted x, and a,, respectively, are given in 
terms of the values ii-, and ci, where 

x, sin* 6 & = - 
cos 6 

and 8, = & 
sm6’ (21) 

The reason for these scalings is simply when the lead- 
ing order boundary layer flow is used as the basic 
flow, the values of .& and ci, obtained are independent 
of 6 ; a similar scaling was incorporated into the non- 
dimensionalisation procedure used by Hsu and Cheng 
A. 

The value of zZ’, we obtain using the leading order 
boundary layer flow as the basic Ilow is 110.7, which 
is lower than 120.7, the value found by Hsu and Cheng 
[9]. The disparity between these results can be ex- 
plained in terms of the precise form chosen for the 
disturbance : Hsu and Cheng assumed that $ ccx”’ 
and t?l is independent of x whereas we assumed that 
both variables are independent of x. Our critical wave- 
number is 8, = 0.623 which compares with 0.636, 
obtained by Hsu and Cheng. Clearly the issue of the 
effect of x-dependence on the onset of instability is 
important, but is outside the scope of the present 
paper. We will see that even greater variations in the 
computed values of z?~ are obtained when the wedge 
angle LY and the number of basic boundary layer terms 
are varied. 

Figure 2 displays the effect on the critical distance 
of varying both the wedge angle and the number of 
terms in the approximation for the basic flow for 
surface inclinations 6 = 5”, 6 = 15”, 6 = 30” and 
6 = 60”. In all four cases the computed value of & 
shows quite marked variation with CI. When 6 = 5” 
increasing the number of terms in the asymptotic ser- 
ies for the basic flow from one to two shows that 
the value of CI has an effect on the critical distance. 
Increasing the number of terms to three has an almost 
imperceptible effect on Z’,, and therefore we have con- 
fidence that our results are quantitatively sound at 
inclinations near to 5”. This qualitative result follows 
from the fact that, at such small inclinations, the value 
of x, is very large (see equation (21)), and therefore 
the first two terms of the boundary layer approxi- 
mation are very accurate representations of the exact 
flow. However, when GC is close to either 0” or 360”, & 
begins to show large variations. This behaviour 
reflects the fact that the second term in the asymptotic 
series for the basic flow is becoming large in either of 
these limits (see the boundary condition forf’, in equa- 
tion (8~)). In these limits the boundary layer approxi- 
mation breaks down and therefore our present results 
will have no validity. 

At increasingly large inclinations the variation of Z2, 
with both c1 and the number of terms used becomes 
progressively greater. At 6 = 60” it is very clear that 
no confidence can be given to any of the numerical 
results for although there is marked variation in & 
with c(, the number of terms used in the asymptotic 
expansion is clearly insufficient to obtain convergence 
to a single curve. As mentioned earlier, we cannot 
use more terms than three because of the presence of 
eigensolutions with an arbitrary amplitude at 0(x-‘) 
relative to the leading order terms. 
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70 

1 
60 ; I I I I I I I ff 

0 50 100 150 200 250 300 350 
Fig. 2. Variation of the critical distance f with wedge angle CC and the number of terms in the asymptotic 

series for the basic flow. (a) 6 = 5” ; (b) 6 = 15” ; (c) 6 = 30” ; and (d) 6 = 60”. 

A different perspective on the above discussion is tative nature of the analysis as c( increases is readily 
obtained by the results given in Fig. 3. Here we hold seen here. For all three cases the three curves cor- 
u fixed and vary both the inclination angle and the responding to one, two and three terms in the basic 
number of terms used. Three values of a are presented : expansion become more widely divergent as 6 
90”, 180” and 270”. The progressively worse quali- increases. 
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Fig. 2-continued. 

350 
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Q 

5. RESULT!3 FOR THE HORIZONTAL HEATED ary layer scalings break down and a different similarity 
SURFACE variable must be defined (see Hsu, Cheng and Homsy 

[8] and Rees and Bassom [lo]). Therefore, it is necess- 
The above section shows that the stability analysis ary to repeat our analysis for the case of a horizontal 

becomes increasingly unreliable as the heated surface surface. 
moves closer ‘to the horizontal (6 = 90’). However, The equations for the basic flow are quoted in the 
when the heate:d surface is horizontal the basic bound- appendix, and the equations satisfied by both vortex 
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XC 

140- 
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(b) 

60- 

40 I I I I I 6 

0 10 20 30 40 50 60 70 80 
Fig. 3. Variation of the critical distance .CC with inclination angle 6 and the number of terms in the 

asymptotic series for the basic flow. (a) a = 90” ; (b) a = 180” ; and (c) a = 270”. 

and wave disturbances are also presented there. leading order flow is supplemented only by the third 
Again, the asymptotic series admits eigensolutions the term in the series. When CI = 270” the third term is 
first of which arises at the same point in the expansion also zero so that the leading order boundary layer 
as for the inclined case. For the horizontal boundary flow is the most accurate representation we have for 
layer, however, the second term in the asymptotic this value of the wedge angle. 
series can be shown to be zero, and therefore the Our numerical results are summarised in Figs. 4 
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(cl 
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UO- 

60- 

40 I I I I I I I I 

1 term 

6 
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Fig. 3-continued. 

XC 
'I 40 

1 

'120- 

IOO- 

80- 

60- 

waves 

0 ; I I I I I 1 I a 

0 50 100 150 200 250 300 350 
Fig. 4. Variation of .9C with c( for the horizontal thermal boundary layer. The thick line denotes vortices 

and the thin line. waves. 

and 5. In Fig. 4 we display the variation of x, with this suggests that vortices might be the preferred mode 
wedge angle for both vortices and waves. In all cases of instability. However, the wide variation in x, with 
the curve for vortices lies below that for waves and CI, and in particular the variation relative to the one- 
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-0.6 I I I I I I I ff 
0 50 100 150 200 250 300 350 

Fig. 5. Variation of the wavespeed c with a for the horizontal thermal boundary layer. 

term basic flow result (given by the tl = 270” solution), 
means that we cannot give any firm conclusions about 
the accuracy of the present results. Partial proof that 
the basic flow is not sulficiently accurate may be 
inferred from Fig. 5, which shows the variation of the 
disturbance wavespeed c with c(. Given that the steady 
boundary layer flow is in the positive x-direction one 
would expect wave disturbances to have a positive 
wavespeed. However, when a is less than about 62” 
the wavespeed is negative, which is an unphysical 
result. We therefore cannot have confidence in the 
accuracy of the basic flow for the purposes of deter- 
mining stability criteria for horizontal thermal bound- 
ary layer flow in porous media. 

6. CONCLUSION 

In this paper we have considered the instability of 
thermal boundary layer flow in porous media for both 
inclined and horizontal heated surfaces. Although 
other analyses exist which study the same problem, the 
novelty of our approach is that we have undertaken 
to find a more accurate stability criterion by using 
asymptotic methods to obtain a better approximation 
to the basic steady boundary layer flow. However, the 
results we have presented show that instability occurs 
too close to the leading edge for the basic flow to be 
represented adequately either by the leading order 
boundary layer flow used by previous authors, or even 
by the higher order theory described here. Thus con- 
fident assertions cannot be made about where the 
boundary layer becomes unstable. The one exception 

to this rather bleak picture is when the inclined surface 
is close to the vertical and the wedge angle is not too 
close to either 0” or 360” ; in this case x, is sufliciently 
large that higher order corrections to the basic bound- 
ary layer flow are small, and the corresponding change 
in x, as the number of terms in the asymptotic series 
increases is also very small. 

It is necessary, therefore, that the instability of ther- 
mal boundary layers in porous media should be under- 
taken using more powerful techniques. One possibility 
lies in the use of direct numerical simulation where 
the full nonlinear time-dependent equations are 
solved ; the first papers using this technique for porous 
media convection have appeared only recently [13, 
141. A second possibility would be to compute the 
exact basic flow and to solve the full (rather than the 
approximate) linearised disturbance equations. 

In view of the difficulties associated with the type 
of analysis used here, it is also of interest to examine 
other boundary layer flows, such as the fluid analogue 
of the present problem, to determine the effect of 
the outer flowfield and to investigate the validity of 
previous work. 
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When the surface is horizontal, the basic boundary layer 
expansion equation (5) breaks down, and the following 
expansion has to be used instead : 

where the similarity variable q is given by 

4=-$. (A3) 

Note that $,,, BO. x and y are the same nondimensional terms 
which appear in equations (2) and (3), but that the coefficient 
functions and q are different from those used in Sections 2 
and 3. Here, the coefficient functions, jO, ga, j,, etc. satisfy 
ordinary differential equations and boundary conditions 
analogous to equations (7) and (8); for further details see 
ref. [12]. 

For x-independent vortex disturbances the stability equa- 
tions take the form : 

$” _ a2x413$ = _ iax413Q (A44 
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+~~~“‘(3~~-lnx~~+2~~))]~. (A4b) 

For wave disturbances we perturb about the basic profile 
in the usual way by setting 

* = cclO+ $(y)ei4x-c') (AW 

0 = 0, + B(y)e’N”-c’) (A5b) 

where $ and 0 are infinitesimally small, a is the wavenumber, 
and c is the wavespeed. For neutral stability the imaginary 
part of c is zero. The wave disturbance equations are given 
by: 

$” _ a2x4/3$ = _ iax4/3g (A6a) 

Ka2x4”f? = -ia[x2”gb+x”3g\+Inxg;]$ 

+ ia[ - CX~‘~ + xfb + xz”j; + x’j3 In xf‘;]S 

-[~rlsb+~X-2’3@1+2r19;) 

-~x-‘(392-21nx(g,+~~g;))]~’ 

+[fCfo-2rzfb)-fx-“‘rlf; 

+;~-“~(3f; - In x(f; + 2&))]&. (A6b) 

Once more, equations (A4) and (A6) need to be sup- 
plemented by those obtained by differentiating with respect 
to the wavenumber in order to find the value of x, for vortices 
and waves, respectively. 

Rees, D. A. S. and Storesletten, L., The effect of aniso- 
tropic permeability on free convective boundary layers 
in porous media. Transport in Porous Media, 1995, 19, 
19-92. 
Rees, D. A. !I., Convection in fluid-saturated porous 
media. Ph.D. ihesis, School of Mathematics, University 
of Bristol, U.K., 1985. 
Rees, D. A. S. and Bassom, A. P., The nonlinear non- 
parallel wave instability of free convection induced by a 
horizontal heated surface in fluid-saturated porous 
media. Journa! ofFluid Mechanics, 1993, 253,261-296. 
Rees, D. A. S., Nonlinear wave stability of vertical ther- 
mal boundary layer flow in a porous medium. Journal of 
Applied Mathematics and Physics (Z.A.M.P.), 1993, 44, 
306313. 

APPENDIX 

In this appendix we present briefly the equations for the 
basic flow and for both vortex and wave disturbances for 


